CONSTANTS

Description	Value
Acceleration of gravity on Earth (g)	$9.80 \mathrm{~m} / \mathrm{s}^{2}$
Speed of light in a vacuum (c)	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Planck's constant (h)	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}$
Electron rest mass (m_{e})	$9.11 \times 10^{-31} \mathrm{~kg}$
Proton rest mass (m_{p})	$1.67 \times 10^{-27} \mathrm{~kg}$
Elementary charge (e)	$1.60 \times 10^{-19} \mathrm{C}$
Coulomb's constant (k_{e})	$8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Boltzmann constant (k_{b})	$1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Gas constant (R)	$8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$
Gravitational constant (G)	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Permeability of free space (μ_{0})	$4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$
Avogadro's number (N_{A})	6.02×10^{23} particles/mole
Heat of fusion of water (L_{f})	$3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
Heat of vaporization of water (L_{ν})	$2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
Specific heat of water (c_{w})	$4.19 \times 10^{3} \mathrm{~J} /\left(\mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right)$
Density of water (ρ_{w})	$1.00 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

FORMULAS

Mathematics	Force and Motion
$C=2 \pi r$	$v_{f}=v_{i}+a t$
$A=\pi r^{2}$	$x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2}$
$S A=4 \pi r^{2}$	$v_{f}^{2}-v_{i}^{2}=2 a\left(x_{f}-x_{i}\right)$
$V=\frac{4}{3} \pi r^{3}$	$a_{\mathrm{c}}=\frac{v^{2}}{r}$
	$\Sigma \mathbf{F}=\mathrm{ma}$
(a, b) denotes a vector with an x-component of a	$F=-k x$
and a y-component of b.	$F \leq \mu N$
	$F=\frac{G m_{1} m_{2}}{r^{2}}$
	$\theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2}$
	$\omega_{f}=\omega_{i}+\alpha t$
	$\nu=r \omega$
	$a=r \alpha$
	$\mathbf{r}_{c m}=\frac{\sum m \mathbf{r}}{\Sigma m}$
	$I=\sum m r^{2}$
	$\tau=\mathbf{r} \times \mathbf{F}$
	$\Sigma \tau=I \alpha$
	$P=\rho g h$
	$F=\rho V g$
	$A_{1} v_{1}=A_{2} v_{2}$
	$P+\frac{1}{2} \rho v^{2}+\rho g y=\text { constant }$

FORMULAS (continued)

Energy, Momentum, and Heat Transfer	Electricity and Magnetism
$\begin{aligned} & W=F d \cos \theta \\ & P=\frac{\Delta W}{\Delta t} \end{aligned}$	$F=\frac{k_{e} q_{1} q_{2}}{r^{2}}$
$K E=\frac{1}{2} m v^{2}$	$\mathbf{E}=\frac{\mathbf{F}}{q_{0}}$
$P E=m g h$	$P E=q V$
$P E=\frac{1}{2} k x^{2}$	$V=-E d$
$\mathbf{p}=m \mathbf{v}$	$V=\frac{k_{e} q}{r}$
$\Delta \mathbf{p}=\mathbf{F} \Delta t$	
$\Delta \ell=\alpha \ell_{0} \Delta T$	$R=\frac{\rho \ell}{A}$
$Q=m c \Delta T$	$V=I R$
$Q=m L$	$R=\sum R_{i}$
$\frac{\Delta Q}{\Delta t}=\frac{k A \Delta T}{d}$	$\frac{1}{R}=\sum \frac{1}{R_{i}}$
$P V=n R T$	$P=I V$
$\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k_{b} T$	$C=\frac{Q}{V}$
$\Delta E=Q-W$	$C=\Sigma C_{i}$
$W=P \Delta V$	$\frac{1}{C}=\sum \frac{1}{C_{i}}$
$e=\frac{T_{h}-T_{c}}{T_{h}}$	$\mathbf{F}=q \mathbf{v} \times \mathbf{B}$
$K E=\frac{1}{2} I \omega^{2}$	$\mathbf{F}=I \ell \times \mathbf{B}$
$\mathbf{L}=\mathbf{r} \times \mathbf{p}$	$B=\frac{\mu_{0} I}{2 \pi r}$
$L=I \omega$	$B=\frac{\mu_{0} N I}{\ell}$
$\mathrm{T}_{k}=273+\mathrm{T}_{c}$	$\begin{aligned} & \varepsilon_{\text {ave }}=-\frac{\Delta \phi}{\Delta t} \\ & \phi=B_{\perp} A \end{aligned}$

In questions on electricity and magnetism, the term current refers to "conventional current" and the use of the right-hand rule is assumed.

FORMULAS (continued)

Waves, Sound, and Light	Modern Physics
$T=\frac{2 \pi}{\omega}$	$E=h f$
$a=-\omega^{2} X$	$E=\gamma m c^{2}$
$x=A \sin \omega t$	$\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
$T=2 \pi \sqrt{\frac{m}{k}}$	
$T=2 \pi \sqrt{\frac{L}{g}}$	$\Delta x=\phi+e V$
$v=f \lambda$	$\Delta x \Delta p \geq h$
$v=\sqrt{\frac{T}{\mu}}$	$p=\frac{h}{\lambda}$
$\nu=\sqrt{\frac{\gamma R T}{M}}$	
$2 L=n \lambda, n$ is an integer	
$4 L=n \lambda, n$ is odd	
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$	
$n=\frac{c}{v}$	
$\frac{1}{f}=\frac{1}{s_{i}}+\frac{1}{s_{0}}$	
$M=\frac{h_{i}}{h_{0}}=-\frac{s_{i}}{s_{0}}$	
$d \sin \theta=m \lambda$	

NOTES FOR PHYSICS TEST

Not all formulas necessary are listed, nor are all formulas listed used on this test.
In questions on electricity and magnetism, the term current refers to "conventional current" and the use of the right-hand rule is assumed.

